TechSlam

Sept. 4, 2025

The NASA-funded ATLAS survey telescope in Chile first reported that the ATLAS comet originated from interstellar space.

Comet 31/ATLAS when it was discovered on July 1, 2025. The NASA-funded ATLAS survey telescope in Chile first reported that the comet originated from interstellar space.

The new, experimental supersonic airplane X-59

DNA Data Storage

How do you actually store digital information on DNA molecules?

How do you get it back again?

DNA Data Storage

- 1. Getting bits/bytes into base pairs
- 2. Building a RNA strand
- 3. Storing the code for long term
- 4. Retrieving the files
- 5. Reading the RNA strand

Uppercase Letters (A–Z) in 8-bit binary (ASCII format):

	•	A = 01000001	•	N = 01001110
	•	B = 01000010	•	O = 01001111
	•	C = 01000011	•	P = 01010000
	•	D = 01000100	•	Q = 01010001
	•	E = 01000101	•	R = 01010010
)	•	F = 01000110	•	S = 01010011
	•	G = 01000111	•	T = 01010100
	•	H = 01001000	•	U = 01010101
	•	I = 01001001	•	V = 01010110
	•	J = 01001010	•	W = 01010111
	•	K = 01001011	•	X = 01011000
	•	L = 01001100	•	Y = 01011001
	•	M = 01001101	•	Z = 01011010

1. Getting bits/bytes into base pairs

For example: A: 01 00 00 01

The 4 bases in genetics	Digital equivalent	THURSDAY - as ASCII	- as RNA	
$T(Th_{v}min_{0})$	0 1	T = 01 01 00	TTTA	
- T (Thymine) -	01	H = 01 00 10 00	TACA	
- A (Adenine) -	00	U = 01 01 01	TTTT	
		R = 01 01 00 10	TTAC	
- C (Cytosine) -	10	S = 01 01 00 11	TTAG	
		D = 01 00 01 00	TATA	
- G (Guanine) -		A = 01 00 00 01	TAAT	
		Y = 01 01 10 01	TTCT	

2. Building a RNA strand

- T (Thymine) 01
- A (Adenine) 00
- C (Cytosine) 10
- G (Guanine) 11

T = 01 01 01 00	TTTA	
H = 01 00 10 00	TACA	
U = 01 01 01 01	TTTT	
R = 01 01 00 10	TTAC	
S = 01 01 00 11	TTAG	
D = 01 00 01 00	TATA	
A = 01 00 00 01	TAAT	
Y = 01 01 10 01	TTCT	

So, what have we achieved?

	Magnetic tape	RNA molecule
Quantity of data stored - GB/mm3	4.7	61,000
Reliable storage time - years	10-30	1000+
Cooling/power equipment - Gcal/TB	7,6	3
Energy use - kWh/TB	22,7	7,2

LIGO: Laser Interferometer Gravitational-Wave Observatory

LIGO's gravitational wave detector is one of the world's most sensitive scientific instruments.

Located near Livingston/Baton Rouge, Louisiana

Operated by Caltech

LIGO's gravitational wave detector

It can measure changes smaller than the width of a proton (2015).

But physicists had wanted to push sensitivity even further to detect different types of cosmic events.

Today (ten years later), it can measure changes smaller than 1-ten-thousands of a diameter of a proton.

THAT'S small . . . but how small is that, really . . . ?

LIGO's gravitational wave detector

It can measure changes smaller than the width of a proton (2015).

But physicists had wanted to push sensitivity even further to detect different types of cosmic events.

Today (ten years later), it can measure changes smaller than 1-ten-thousands of a diameter of a proton.

That is equivalent to measuring the distance to Alpha Centauri (4 LY away) down to the width of a human hair.

Mind you: 1 LY is 6 trillion miles

This is the <u>first-ever observation</u> of an exoplanet actively carving a gap within a disk -- the <u>earliest direct glimpse</u> of planetary sculpting in action.

It's a young <u>planet</u> outside our Solar System.

At the center of this frame lies a young Sun-like star.

Surrounding the star is a bright, dusty protoplanetary disk -- the raw material of planets.

Gaps and concentric rings mark where a newborn world is gathering gas and dust under its gravity, clearing the way as it orbits the star.

